
The model’s terminal horizon, T, is when condition-dependent reproduction occurs. The time span preceding T is divided into 20 s time
units, t, and decisions are made every t. The model has 2 internal state variables: X (t ) = x represents energy reserves at t and Y (t ) = y
represents oxygen stores at t. Their ‘discretized’ values (see Appendix 2) are 0 to 45 and 0 to 11, respectively. 

An environmental state, H(t ) = h, represents location at t (Fig. 1). We will use the notation depth(H(t)) to indicate the depth (in meters)
from the surface to H(t ), and dist(H (t )) to represent the distance (in meters) from the refuge. The spatial structure of environmental states
is as follows. H(t ) = 0 represents a predation refuge lacking food where depth(0) = 0 and dist(0) = 0 (i. e. the haulout) and seals must be
there by T to reproduce. H(t ) = 25 represents the surface of a nearshore, shallow habitat with dist(25) = 500, and depth(25) = 0. H(t ) = 150
is the surface of an offshore, deep habitat with dist(150) = 3000 and depth(150) = 0; this is 2500 m from Location 25. H(t ) = 2 is a demer-
sal foraging patch available from location 25 with depth(2) = 40. H(t ) = 1 is a pelagic foraging patch available from Location 150 with
depth(1) = 20. H(t ) = 5 is a demersal foraging patch available from Location 150 with depth(5) = 100. We will refer to Locations 0, 25, and
150 as habitats, with the latter 2 further qualified as foraging habitats, and Locations 1, 2 and 5 as depths or patches (Fig. 1).

The decision variable is D (x,y,h,t ) = d, where d is the future location (at either t + 1 or t + travel time, see below) chosen by a seal from
Location h and at Time t. Decisions are unconstrained by time of day or night but limited by the value of h, as described in state dynam-
ics (below). We assume a travel speed of 1 m s–1 between habitats and depths. The notation time (h,d) will indicate the travel time (in 20 s
time units) from Locations h to d, which is |dist(h) – dist(d)|/20 for surface transit and |depth(h) – depth(d)|/20 for diving. Thus, the values
of H(t ) = h listed earlier correspond to the number of 20 s time units required to travel to the given location from either the refuge (if
switching surface habitats) or from the surface (if diving). We will use Pr{h,d} to indicate the probability of surviving the transition from
h to d. So, Pr{h,d} = p indicates that there is a 1-p probability of predation during the behavior in question. See Appendix 2 for parame-
ter values.

State dynamics

Here we describe how decisions affect state variables at the subsequent time period. A seal at the refuge or at a surface habitat can
decide to remain or switch habitats. If it stays at the current habitat, 

(A1)

where αh,d is the energetic cost of Decision d made at Location h; the constant yk = 6 represents oxygen stores when not diving (i.e. at the
refuge or during surface transit); β = 1693 and z = 0.0007 are scalars (Appendix 2) determining the shape of the oxygen-gain curve as a
decelerating function of Y(t) = y (see Kramer 1988); μshark (h, d ) and μorca (h, d ) are the probabilities of predation by sleeper sharks Som-
niosus pacificus and killer whales Orcinus orca, respectively, when making Decision d at Location h.

If seals decide to switch habitats, D(x,y,h,t ) = d, with (h,d ) one of (0,25), (25,0), (0,150), (150,0), (25,150), or (150,25), and

(A2)

If a seal at the surface of a foraging habitat chooses to dive, or a seal at a foraging patch chooses to ascend, then D(x,y,h,t) = d, with (h,d)
one of (150,1), (1,150), (150,5), (5,150), (25,2), or (2,25) and
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Appendix 1 (continued)

(A3)

where uh,d is the oxygen cost of Decision d made at Location h.
When a seal at a depth stratum (h = 1,2,5) chooses to remain (h = d), there are 2 possible outcomes. First, the seal may encounter and

capture prey with probability λh and then

(A4)

where gh is energy gain at location h if prey are captured and c = 2 is a constant representing the added expenditure of chasing and han-
dling prey. 

If the seal does not encounter prey, with probability 1 – λh, then

(A5)

Let F(x,y,h,t) be the maximum expected reproductive success at T, given that X(t) = x, Y(t) = y, H(t) = h, and the seal behaves optimally
from t + 1 until T. Let Vd(x,y,h,t) be the fitness value of decision d, as determined by Eqs.(A1) to (A5), for a given time period and set of
states. Then, the dynamic programming equations (Clark & Mangel 2000), which are solved by backwards iteration from the terminal fit-
ness function described later, are as follows for the possible locations:

(A6)

Terminal fitness function

Next, we assume that ψ and σ are, respectively, the probabilities of producing an offspring that will survive until weaning, and of surviv-
ing from T to the following reproductive season, given that X(T) = x. After T, the expected number of pups produced over the remaining
lifespan of 20 yr is given by ϕ. Then, the terminal fitness function becomes:

(A7)

where ψ and σ depend on X(T) = x such that

(A8)

and
(A9)

Eq. (A8) describes an assumed shape. We chose this increasing sigmoid function because body mass, which correlates with energy stores
(Bowen et al. 2001), may influence fertility (Boyd 2000) and offspring survival (Bowen et al. 2001). Thus, Eq. (A8) depicts our assumption
that seals in the lowest range of energy states have no possibility of reproducing that year, but current fitness rises and then decelerates
with increasing values of X(T). Eq. (A9) was constructed by running a preliminary model with baseline parameters values (Tables 1 & 2)
and using Eq. (A8) as the terminal fitness function. We ran 9 sets of forward iterations (1000 replicates per treatment) in which initial
energy state varied in 5 U increments from X(0) = 5 to X(0) = 45. These bounds correspond, respectively, to 0.11xmax and xmax. Eq. (A9)
was the estimated survival probability from t = 0 to T as a function of X(0)=x. We assume that this function applies to survival from T to
the next reproductive season.
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Appendix 1 (continued)

Finally, ϕ = 5.78, is the expected number of pups produced after T during the potential remaining lifespan of 20 yr, and was calculated as

(A10)

where y represents years after T. Survival probability from y-1 to y, lx = 0.87, is the average σ (from Eq. 9) for all values of X(0)=x. Fecun-
dity at y, mx = 0.92, was calculated as the average ψ (from Eq. A8) for all seals that survived to T during the forward iterations described
above. Our simplifying assumption is that the seal’s performance in one year does not predict future performance. We solved Eq. (A6)
through backward iteration from Eq. (A7) (Clark & Mangel 2000).

Forward simulations 

Solutions to the dynamic programming equations provided values for an optimal decision matrix for all combinations of state variables
and time periods. Based on this matrix, we used forward iterations (Clark & Mangel 2000) to predict behavior and fitness of seals. 

While forward iterations covered 120 d, computer memory limited the decision matrix to the last 20 d preceding potential reproduction,
or Periods T-1, T-2, …, T-86400. The decision matrix, however, had reached stationarity by that point, and we assumed that the optimal
policy for the first period of the 20th day prior to the terminal horizon (T-86400) also was optimal for earlier periods. ‘Stationarity’ at
T-86400 was determined indirectly as follows: we ran forward iterations simulating the 120 d season based on baseline parameter values
and 2 decision matrices (1000 replicates/matrix). The first matrix was generated with a run of 86 400 periods, or 20 d; the second with a
run of 82 080 periods, or 19 d. The time spent at any location during forward iterations was nearly identical when using either matrix.

Experimental treatments (see ‘Computer experiments’ in ‘Methods’) were simulated 1000 times each and we interpret results as pre-
dicted responses by seal populations with initial sizes of 1000 individuals under the simplifying assumption of no density dependence
(Clark & Mangel 2000). Except for the predator manipulations (see below), behavioral data include only individuals that survived to T,
thus simulating the ‘risk’ manipulations of empirical studies in which modified predators threaten but cannot kill. Comparing our simu-
lations of seals that evaded predators to empirical experiments with sublethal predators is valid because in our simulations only luck, not
‘phenotype’, differs between surviving and depredated seals. 

We quantify the relative size of trait- and density-mediated indirect effects of top predators on fish as the proportional reductions of the
number of fish eaten by seals due to risk avoidance versus density reduction, respectively. Following Luttbeg et al. (2003). 

(A11)

and

(A12)

where fish eaten is the mean number of fish eaten by individual seals during the 120 d simulation period under the given manipulation
scenario. The risk manipulation consisted of simulations in which mortality risk per time period from at least 1 predator type was >0, but
included only replicates in which seals avoided predation (i.e. fish eaten = sum of fish eaten by non-depredated seals/number of non-
depredated seals). The predator manipulation had the same predation risk as risk manipulation, but included all replicates (i.e. fish eaten
= sum of fish eaten by all seals up the point of depredation or the terminal horizon, divided by 1000, the initial population size). No manip-
ulation consisted of simulations without predation risk and also included all replicates (i.e. fish eaten = sum of fish eaten by all
seals/1000). 
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Internal state variables

For energy state X(t ), we assumed an energy density of 15923.53 kJ kg–1 (see Bowen et al. 2001) and that body weights ranged from 50
to 85 kg, such that xmin = 796176.47 kJ and xmax = 1353500.00 kJ. From the range xmax – xmin = 557323.53 kJ and Eq. (2.3) of Clark & Man-
gel (2000), we created the 46 computer values of X(t ): 0 to 45, with 0 implying death by starvation.

For oxygen state Y(t ), we assumed that 105.11 ml of oxygen are consumed per 20 s time unit and that oxygen level can rise from 
ymax = 0 to ymax = 3322.21 ml during a 120 s surface interval, with ymax allowing a maximum dive duration of 640 s. From the range 
ymax–ymin = 3322.21 ml and Eq. (2.3) of Clark & Mangel (2000), we created the 11 computer values (0 to 10) of Y(t). The oxygen gain func-
tion in Eq. (A1) was constructed so that the resulting surface and dive durations were consistent with the range recorded during prelim-
inary observations (A. Frid unpubl. data). Activity-specific energy and oxygen costs are detailed in Table 1.

Resource-related parameters 

In SW Prince William Sound (PWS) during February and March of 2004, 9 harbor seals instrumented with VHF headmounts were tracked
from a moving vessel during day and night (A. Frid unpubl. data). While lagging approximately 0.5 to 2 km behind the seal, depth-
specific fish biomass was estimated every 1 s and averaged every 1 min using a BioSonics DT4000 echosounder at 70 kHz (Thomas &
Thorne 2003 and references within). Data were averaged for 30 min sampling periods and 10 m depth intervals, and stratified into 2 habi-
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Appendix 2 (continued)

tats according to bottom depth (which correlates with distance from the refuge): (1) 35 to 45 m deep, and (2) 90 to 120 m deep (their
surface locations being represented in the model by H(t ) = 25 and H(t ) = 150, respectively). Using mean biomass values from the 30 min
sampling periods as individual data points, we determined for each habitat the depth strata where median biomass (combined for day
and night) was highest (A. Frid & R. E. Thorne unpubl. data). Depths represented in the model as H(t ) = 1, 2, 5 were based on these
biomass peaks. Baseline parameter values for the location-specific probabilities of encountering and capturing prey, λh (Table 2) were
calculated as λh = S(MdnBiom), where MdnBiom is the median biomass at a given location of all 30 min sampling periods, scaled by 
S = 2000. Medians were chosen over means to reduce bias from a few isolated fish schools that were very large.

Individual fish were not caught for ground-truthing acoustic targets, and species and sizes (Table 2) were assumed based on previous
surveys in the area at similar times of year (Thomas & Thorne 2003, R. E. Thorne unpubl. data). For walleye pollock Theragra
chalcogramma, length was converted to weight (525 g) with equations from www.fishbase.org. For herring Clupea pallas, weight (115 g)
was taken from spring data in the area (R. E. Thorne unpubl. data). Energy gain per fish caught (Table 2) was calculated from energy
densities in Anthony et al. (2000; their Appendix B) discounted by the seal’s assimilation efficiency, assumed to be 0.9.

Predation risk

Time-at-depth data during day and night were available for three 2.1 to 2.5 m-long sleeper sharks Somniosus pacificus instrumented with
recording devices in PWS (L. Hulbert unpubl. data). Data were available for 6 mo (January through June) for 1 shark, 2 mo (January and
February) for the second, and 1 mo (May) for the third. Location-specific risk from sharks μshark (h,d ) when d = h (Table 2) was calculated
as μshark (h,d ) = S(MPD), where MPD is the overall mean (weighted by the number of months sampled) of the mean proportions of time
each shark spent at a given depth, scaled by S = 1.00E-7. 

For risk from killer whales Orcinus orca, μorca (h,d ) when d = h (Table 2), relative differences between depths were assumed based on
limited data suggesting that mammal-eating transient killer whales generally use depths ≤ 20 m, use 20 to 40 m to some extent, and rarely
forage deeper than 60 m, with some depth difference between night and day. The same data set suggests that travel speed is about a third
slower during the night, possibly implying less hunting activity (Baird 1994, R.W. Baird unpubl. data), and thus risk at night was parame-
terized as two thirds of daytime risk. For a given depth, we made killer whale risk twice as high nearshore than offshore. The rationale is
that killer whales might have higher encounter rates with their pinniped prey when patrolling the vicinity of haulouts, and researchers
in PWS encounter transient killer whales on average twice as often nearshore as offshore (average for 7 survey zones estimated from Fig.
3. of Scheel et al. 2001). Further, 7 of 10 killer whale kills of harbor seal were observed nearshore (Saulitis et al. 2000). (In some survey
zones, killer whales were found more frequently offshore, possibly because they were targeting porpoises rather than seals; Scheel et al.
2001, C. Matkin pers. comm.)

Diurnal versus nocturnal parameter values

Both predation risk and resource-related parameter values depend on whether decisions occur during night or day, which in the model
last 9 and 13 h per diel cycle, respectively (means for February through May at PWS). Specifically, let day_len = 4320, the number of 20 s
time units t in a day. Daytime parameter values are used if (day_len – t mod day_len) ≥ 9⁄24 day_len, otherwise nighttime values are used.

Limited seasonality

One of the model’s simplifications is lack of seasonality during the 120 d considered in forward simulations. For this period, February to
May, parameter values are based either on year-round averages (shark predation risk), summer data (killer whale risk and energy con-
tent of prey), or late February and early March distributions of resources, as described above.


