Cross-fertilizing aquatic and terrestrial research to understand predator risk effects

Aaron J. Wirsing,1,∗,† Michael R. Heithaus2,† and Alejandro Frid3,†

Research that conceptually transcends boundaries between aquatic and terrestrial ecosystems has a long history of increasing insight into ecology and evolution. To stimulate further cross-fertilization between studies that focus on different ecosystems, we highlight several insights on risk effects—the costs of antipredator behavior—that have emerged in part because of combined advances in aquatic and terrestrial systems. Namely, risk effects (1) are not restricted to structured landscapes where antipredator behavior is easily measurable, (2) can be substantial even when prey experience very low predation rates, (3) are contingent on a three-way interaction between the hunting mode of the predator, escape tactic of the prey, and features of the landscape/physical environment, and (4) can interact with direct predation (consumption) and resource availability (through its effects on prey energy state) to control consumer population size. We conclude by highlighting the value of exploring differences between aquatic and terrestrial risk effects and offering a prospectus for future studies of antipredator behavior and its ecological importance in both eco-domains. © 2014 Wiley Periodicals, Inc.

How to cite this article: WIREs Water 2014. doi: 10.1002/wat2.1039

INTRODUCTION

Cross-fertilization of research in freshwater, marine, and terrestrial ecosystems has a long history of increasing insight into ecology and evolution that goes back to at least Darwin and his contemporaries. Hamilton’s1 work on the geometry of the selfish herd provides a case in point. As illustrated by the 43-year-old quotation opening this essay, observations from both marine fish and ungulates inspired his ground-breaking insights on the antipredator benefits of group living. Moreover, cross-fertilization between aquatic and terrestrial eco-domains continues to advance modern ecology.2–4 For example, removal...
experiments aimed at testing the effects of particular species on community interactions were employed first by marine and freshwater ecologists but now are applied widely to terrestrial food webs.\textsuperscript{5,6} The metabolic theory of ecology,\textsuperscript{7} which predicts organismal responses to environmental change, diffused in the opposite direction.\textsuperscript{8} Behavioral ecologists have also benefited greatly from cross-ecosystem comparisons. For instance, comparative studies between odontocete cetaceans and primates have yielded general insights into the function of coalitions and other social behaviors (e.g., Ref 9). Despite these examples, however, ecologists often underutilize the potential benefits of thinking outside the confines of a particular eco-domain.\textsuperscript{4,10–13}

Research into predator risk effects illustrates how removing conceptual boundaries across freshwater, marine, and terrestrial domains can strengthen ecological insights. Risk effects are the nonconsumptive effects of predators on prey, namely the lost foraging opportunities and lower levels of growth and reproduction experienced by prey investing in antipredator behavior. These effects are increasingly recognized for their potential to influence prey populations, community organization, and ecosystem dynamics.\textsuperscript{14–19} This growth of interest in risk effects owes much to cross-fertilization between laboratory and mesocosm studies in different ecosystems (e.g., Ref 20). Our experience is, however, that many ecologists studying large-bodied taxa (e.g., ungulates) under natural field conditions often are unaware of research on risk effects outside of their eco-domains. Such insular ecology arguably has limited understanding of the ecological role of large vertebrates in general and marine ones in particular.\textsuperscript{18,21–23} Here, we synthesize insights arising from cross-fertilization of aquatic and terrestrial studies on the ecological consequences of antipredator behavior, highlight the value of studying how risk effects might differ in these two environments, and provide a prospectus for future work.

THE SCOPE OF ANTIPREDATOR BEHAVIOR

There is a growing effort to elucidate the consequences of risk effects for community properties. This effort has primarily entailed the use of mesocosm experiments (e.g., see Ref 20 for a review) or fieldwork in aquatic and terrestrial systems where, from the researcher’s perspective, well-defined landscape structures (i.e., patchiness) facilitate measures of variability in antipredator behavior (e.g., habitat shifts and use of refugia,\textsuperscript{24} and giving-up densities\textsuperscript{15}). Moreover, it has focused largely on invertebrate or small-bodied herbivores that are amenable to experimentation\textsuperscript{25} and that may experience high predation rates. In contrast, risk effects are less studied where spatial structure (patchiness) is less definable (e.g., pelagic marine systems\textsuperscript{16,27}) or where the prey assemblage is composed of large-bodied marine mesopredators or herbivores that, perhaps owing to high investment in antipredator behavior, can have low predation rates.\textsuperscript{22}

In patchy landscapes, which characterize many terrestrial ecosystems and littoral and benthic zones within aquatic ecosystems, it is well documented that prey individuals often respond to predation risk by shifting to safer habitats or by increasing vigilance. These responses carry the cost of lower foraging rates or reduced access to resources\textsuperscript{5,24} and, at least in risky patches, may also transmit positive indirect relationships between predators and species eaten by mesoconsumers [i.e., trait-mediated trophic cascades, which include behavior-mediated trophic cascades (BMTC)]\textsuperscript{16}. Habitat shifts in response to predation risk are more difficult to document and often go unrecognized in pelagic habitats of the ocean and in limnetic and profundal zones of freshwater systems, which are less discrete, yet such shifts certainly occur. For example, one of the largest migrations of biomass on the planet—the downward movement of zooplankton to deep strata during daylight hours and then back to surface waters at night (diel vertical migration, DVM)—appears to be driven by risk from visually orienting fish predators that hunt near the surface during the day.\textsuperscript{28,29} Similar patterns of predator-induced DVM have been documented in freshwater planktivores.\textsuperscript{30} Given the pervasiveness of DVM, does the paucity of evidence for open-water habitat shifts in response to predation risk reflect a lack of looking by researchers rather than the implausibility of these behaviors?\textsuperscript{27} Answering this question will, in our view, be expedited by two developments. First, recognizing that open-water systems are, in fact, structured in a way that can facilitate spatial shifts (e.g., in terms of oceanic fronts and plankton patches\textsuperscript{31}), should allow ecologists to become more aware that risk effects are plausible in these systems. Further—as illustrated by the quotation opening this essay—aquatic species in open water can also effectively create patchiness by schooling.\textsuperscript{1} Large schools of fish, for instance, effectively represent patches offering heightened safety (e.g., via predator detection, confusion, and/or risk dilution) and within which danger can vary as a function of group position. This idea appears to apply in riverine ecosystems as well. For example, Orpwood et al.\textsuperscript{32} showed that European minnows (\textit{Phoxinus phoxinus}) in seminatural stream
channels formed larger shoals in response to predation risk, but only in structurally simple habitats. Second, risk-induced shifts already are well documented in many systems where researchers can define landscape structure more easily. Awareness of that evidence should remove conceptual barriers for testing the plausibility of similar behaviors in the more subtle patchiness of open-water systems. For example, experiments in old-field meadows found that grasshoppers at risk of predation from spiders avoided the bottom strata of vegetation—where dangerous spiders and preferred food were most abundant—and increased use of the safer but food-poorer canopy.33 These experiments inspired behavioral models for pinnipeds (i.e., large marine mesopredators) under risk of predation by deep-water sharks. Similar to the spider–grasshopper system, these models predicted that pinnipeds would optimize risk-energy trade-offs by avoiding more dangerous and food-richer deep strata and instead foraging more safely (at a feeding cost) in shallower strata34,35; empirical data provided preliminary support for these predictions.35 Similarly, Kramer36 was inspired by the application of the marginal value theorem37 to patch-leaving decisions by bees to develop one of the earliest models of the optimal dive cycle by air-breathing foragers (e.g., sea turtles, diving ducks, and marine mammals). Kramer’s work, in turn, led to optimal dive cycle models that incorporated predation risk18 based on the $\mu/g$ rule—a theory inspired by freshwater fishes which predicts that foragers minimize the ratio of predation risk experienced to unit of energy gained.39

In the mid-1990s, there was little appreciation for the possibility that large-bodied marine herbivores (sea cows and sea turtles) and mesopredators (e.g., cetaceans and pinnipeds), which have low predation rates in many areas, respond to predation risk by shifting foraging habitats.22 At the time, our research on antipredator responses by large marine consumers in Shark Bay, Australia, was motivated instead by field research from the terrestrial realm documenting risk-induced behavioral adjustments by large-bodied species, including upper trophic-level predators (painted dogs, Lycaon pictus40), herbivores (wildebeest, Connochaetes taurinus41), and primates (baboons, Papio cynocephalus ursinus42). Using the ideal-free distribution framework, which was developed initially for understanding the use of reproductive resources by birds,43 we have inferred how spatiotemporal variation in the risk of predation from tiger sharks (Galeocerdo cuvier) affects four long-lived marine mesopredators—Indian Ocean bottlenose dolphins (Tursiops aduncus44), olive-headed sea snakes (Disteria major45), bar-bellied sea snakes (Hydrophis elegans46), and pied cormorants (Phalacrocorax varius47) (see Ref 47 for a review). All of these mesopredators trade food for safety by shifting into food-poor but safe habitats when threatened with shark predation. Large marine herbivores in this system also show marked risk sensitivity despite rarely succumbing to predation. For example, dugongs (Dugong dugon) in Shark Bay sacrifice food (seagrass) for safety by shifting from seagrass patches into deep water where seagrass is scarce,48 avoiding the interior portions of seagrass meadows where access to safe deep water is reduced,49 avoiding the use of a profitable foraging tactic—seagrass rhizome excavation—that constrains vigilance,50 and by altering their dive cycles51 when confronted with tiger shark predation risk. Recent evidence from whales further challenges the idea that risk-induced spatial shifts, and other forms of antipredator behavior, are restricted to small-bodied aquatic species that suffer heavy predation rates. Specifically, Curé et al.52 found that sperm whales (Physeter macrocephalus) interrupt foraging dives and surface to form groups, thereby giving up food for safety, when exposed to sounds of mammal-feeding killer whales (Orcinus orca).

THE CONTINGENCY OF RISK EFFECTS

The threat of predation often induces behavioral modification (e.g., avoidance and increased vigilance) that reduces prey foraging investment.24,53 Consequently, predator presence is generally assumed to benefit species serving as food for prey. Growing evidence suggests, however, that this assumption may not always be valid and that prey responses to predators—and, therefore, the strength of risk effects—instead vary with context.19,21,23,54 For example, recent studies in a terrestrial old-field ecosystem show that grasshopper responses to spider predators depend on whether the spiders are active (roving) or sit-and-wait (ambush) hunters.25 Ambush spiders leave persistent, point-source cues of predation risk, to which herbivorous grasshoppers can respond with chronic habitat shifts, whereas roving spiders do not leave such cues. Consequently, ambush spiders indirectly benefit nutritious grasses by inducing grasshoppers to shift their foraging activity to less preferred plant species, whereas roving spiders do not trigger habitat shifts. Instead, roving spiders have stronger consumptive effects on grasshoppers and thus differ in the kinds of indirect effects that they exert on plants.25 A recent meta-analysis suggests that this dichotomy in prey responses based on predator hunting mode likely is widespread.54
When applied to the Shark Bay ecosystem, these results might suggest that tiger sharks, which are roving predators, should elicit relatively little response in their prey. As we have already discussed, however, several prey species in this system manifest strong behavioral responses when in the presence of this roving predator. This disparity likely owes to the spatial predictability of tiger shark encounter rates in Shark Bay and the capacity of many of its prey species to reduce their probability of shark mortality through spatial shifts.21 That is, the grasshoppers studied by Schmitz and coworkers are found in a relatively homogeneous landscape where encounters with roving spiders are unpredictable. Conversely, tiger sharks in Shark Bay are found in a patchy landscape where they prefer shallow, seagrass-covered banks to deeper water.55 Thus, some prey species (e.g., bottlenose dolphins and dugongs) avoid tiger sharks by spending less time in shallow habitats.44,48 Interestingly, tiger sharks also prefer peripheral (edges) to central (interiors) portions of seagrass meadows.55 As a result, some prey species (e.g., olive-headed sea snakes) foraging over these meadows increase their use of interiors when confronted with tiger shark risk.21,45 Others (e.g., bottlenose dolphins and dugongs), however, actually spend more time foraging along seagrass meadow edges when threatened by sharks because their mode of escape (subsurface flight into deep water) confers the best overall probability of surviving a shark attack in this microhabitat despite lower predator encounter rates in interiors.49,56

The combined insight of studies from aquatic and terrestrial domains and both small-scale experiments and large-scale observational studies suggests that predator risk effects and resulting indirect effects are influenced by a three-way interaction between the hunting mode of the predator, the escape tactic of the prey, and physical features of the landscape in which the encounter takes place.21,23 Consistent with the work on spider predators by Schmitz, prey responses are indeed contingent on predator hunting mode. Our marine studies suggest, however, that roving predators can nevertheless trigger antipredator behavior and risk effects on communities that cascade to primary producer communities and perhaps beyond if landscape heterogeneity creates spatial variability in the effectiveness of prey escape responses. Although more work is needed to establish its generality across eco-domains, this framework is supported by studies in both aquatic and terrestrial systems. For example, roving adult perch (Perca fluviatilis) predators elicit divergent spatial shifts by juvenile perch (into open water) and roach (Rutilus rutilus) (into cover), presumably because different parts of the environment offer an escape advantage for these two prey species.58 Similarly, in stream pools, differential responses of herbivorous minnows (Campostoma anomalum) and crayfish (Orconectes virilis) to predatory largemouth bass (Micropterus salmoides) propagated variable indirect effects on algae.59 Namely, antipredator responses by minnows, which shoal as a defense against bass, triggered whole-pool increases in algal height. In contrast, defensive responses by crayfish, which hide in burrows when threatened, led to increases in algal height that were concentrated along pool edges. Finally, on the Alberta prairie, Lingle60 showed that roving coyotes (Canis latrans) trigger spatial shifts by mule deer (Odocoileus hemionus) and white-tailed deer (Odocoileus virginianus) that are explained by prey escape behavior. Specifically, mule deer shift to broken terrain, where their escape tactics (active defense and bounding) are facilitated, whereas white-tailed deer shift to gentle terrain, where their sprinting escape tactic is most effective.

**THE IMPORTANCE OF STATE-DEPENDENT RISK TAKING**

According to state-dependent risk-taking theory, prey individuals experiencing resource shortages or low energy reserves should invest less in safety to avoid starvation or reduced reproductive potential and, therefore, suffer higher predation rates than conspecifics with greater energy stores.61,62 This idea took hold in terrestrial field studies relatively early on. For example, Sinclair and Arcese41 found that reductions in food supply on the African Serengeti appear to lead wildebeest (C. taurinus) to increase foraging risks and, as a result, succumb more frequently to lion (Panthera leo) predation. More recently, this framework has been applied and supported in large-scale aquatic ecosystems. For example, using whole-lake experiments, Biro et al.63 showed that food addition led to decreased risk taking and—owing to lower predation rates—68% higher survival in age-0 rainbow trout (Oncorhyncus mykiss). Furthermore, inspired in part by Sinclair and Arcese41 and mesocosm experiments involving larval amphibians by Anholt and Werner,64 theoretical simulations have predicted that a decline of near-surface fatty fish (e.g., herring Clupea palassi) in Prince William Sound, and therefore reduced energy stores, would induce Steller sea lions (Eumetopias jubatus) and harbor seals (Phoca vitulina) to increase their risk taking by making more deep foraging dives, thereby incurring higher predation rates inflicted by deep-dwelling Pacific sleeper sharks (Somniosus pacificus).35,65 Their findings also prompted research in Shark Bay showing that green turtles (Chelonia
mydas) in poor condition spend a large proportion of their foraging time over the interior portions of shallow seagrass meadows, where they can access high-quality seagrass but are subject to a heightened risk of mortality from tiger sharks.66 Conversely, green turtles in good physical condition, which make up most of the local population, forage primarily along the periphery of seagrass meadows where escape from tiger sharks into deep water is facilitated. By implication, much of Shark Bay’s seagrass is little used by green turtles because tiger sharks render it too dangerous to exploit, and therefore both food and predation by sharks control the number of green turtles in the ecosystem.

The general insight that emerges from integrating research on state-dependent risk taking in different eco-domains is twofold. First, resource declines or chronic resource limitation (i.e., bottom-up forces) could reduce levels of antipredator investment within populations of large consumers by depressing average condition and, as a result, indirectly increase direct predation rates (i.e., top-down forces) experienced by these populations.18,35,41,61,64,65 Recently, for example, a long-term decline in food supply has been invoked to explain increased risk taking and predation mortality in the marine bivalve (Macoma balthica).67 Interestingly, this same scenario (termed the ‘Stalingrad’ effect)68 could be unfolding in the Greater Yellowstone Ecosystem, where a recent study during a period of prolonged drought and nutrient limitation found only modest evidence for costly antipredator investment in elk (Cervus elaphus) relative to earlier investigations.69 More broadly, among herbivores at least, terrestrial species are more likely to be nutrient limited and require high-quality forage than their aquatic counterparts.70 Consequently, under this state-dependent risk-taking model, herbivores in terrestrial systems may be forced into riskier foraging decisions, and thereby suffer higher predation rates, than those in aquatic environments. If, on the other hand, levels of antipredator investment remain stable despite long-term resource declines, then large consumer populations could be depressed through declines in state-dependent reproductive rates (e.g., Ref 71). Thus, in both aquatic and terrestrial systems, a dichotomous ‘top-down versus bottom-up’ approach that invokes either direct predation or resource quality as the sole driver of consumer densities and community properties may be flawed. Second, because of the dynamic interplay between consumer condition, risk taking, and vulnerability to predation, predators are more likely to affect consumer populations predominantly through the interaction between risk and consumptive effects, rather than by consumptive effects or risk effects alone18,47 (see also Refs 14 and 16). For example, predators can depress prey populations solely via prey starvation stemming from antipredator investment or via the combination of risk-induced starvation and increased predation on risk-prone individuals in compromised condition.47

DIFFERENCES BETWEEN AQUATIC AND TERRESTRIAL RISK EFFECTS

Another potential benefit of cross-fertilization is the opportunity to identify fundamental differences between freshwater aquatic, marine, and terrestrial realms that might lead to divergent risk effects or variation in their relative importance in population and community dynamics. A recent cross-system comparison of predator–prey body-mass ratios, for example, suggests that size constraints on trophic interactions are weaker in terrestrial than in aquatic systems. In an aquatic medium that lacks hard surfaces, prey not swallowed whole are likely to sink or be swept away and lost.72 By implication, size constraints on the nonconsumptive effects of gape-limited aquatic predators may be more pronounced than those on terrestrial predators. Furthermore, some top aquatic predators are highly mobile and migrate seasonally while their prey species remain within the same area year-round (e.g., tiger sharks in Shark Bay73). As a result, nonmigratory aquatic prey species may experience ‘risk-released’ conditions for greater periods of time than their counterparts in terrestrial systems, where top predators are often more closely tied to localized patterns of prey abundance (e.g., gray wolves74). Terrestrial systems with seasonally migrating avian predators, on the other hand, could serve as an interesting basis for comparison of the effects of periodic risk release in aquatic and terrestrial environments. Many aquatic predators, including sharks, exhibit indeterminate growth and ontogenetic dietary shifts. Accordingly, a research approach that transcends ecosystem boundaries would help to determine whether metrics such as body size and trophic level might be more informative than terrestrial-derived ways of categorizing the risk effects, and ecological roles, of predators (i.e., apex- and mesopredation).75 Finally, open-water systems are by nature three dimensional and usually lack complete refuges, thus requiring antipredator behaviors that differ from those in structured coastal marine (e.g., coral or rocky reefs), freshwater, and terrestrial environments where complete refugia are available. Antipredator behavior that may apply to open-water systems (e.g., group formations or movement patterns that confuse predators or dilute risk26), in turn, may offer insights into
the kinds of antipredator behavior we might expect to observe in benthic, littoral, and terrestrial systems where habitat structure is poorly defined.

### BOX 1

**THE INFLUENCE OF VISIBILITY ON RISK EFFECTS IN AQUATIC AND TERRESTRIAL ECOSYSTEMS**

Recent work in terrestrial ecosystems has opened a debate on the importance of predator risk effects in structuring ecosystems. Namely, in Yellowstone National Park, early studies suggested that a BMTC, whereby the presence of wolves (*Canis lupus*) induces habitat shifts and changes in foraging behavior of elk (*Cervus elaphus*) that release riparian vegetation from herbivory, was critical to structuring the ecosystem. More recently, this view has been challenged. Winnie suggested that under current conditions a BMTC might not occur because elk are able to detect the presence or absence of wolves in a general region and take advantage of low-risk periods to forage in habitats that would be too dangerous if wolves were present. This scenario raises the question of whether the strong risk effects of tiger sharks in Shark Bay are facilitated by the poor underwater visibility that characterizes the area. That is, unlike in Yellowstone, Shark Bay’s turbidity may prevent potential prey, which rely primarily on vision to detect sharks, from tracking the presence of their predators and responding to risk at fine spatiotemporal scales. Rather, limited visibility in this ecosystem may necessitate more dramatic trade-offs based on general encounter and escape probabilities (e.g., avoidance of large areas where escape is inhibited when tiger sharks are present in the ecosystem). In accord with this idea, a recent terrestrial review found that, for nocturnal prey species that orient visually, low visibility enhanced the effect of predation risk on foraging (activity correlated positively with moonlight), presumably because these species are best able to detect and avoid predators under well-lit conditions. Similarly, Iribarren and Kotler found that Nubian ibex (*Capra nubiana*) displayed greater investment in antipredator vigilance when in the presence of line-of-sight obstructions. By implication, an understanding of factors that modify visibility should help to explain the nature and strength of risk effects in both aquatic and terrestrial ecosystems. Furthermore, absorption and scattering of light are more pronounced in aquatic environments, limiting the range of visual interactions relative to that in terrestrial ecosystems. Thus, when light is available, terrestrial prey species may generally be better able to perceive and respond to predation risk at fine spatiotemporal scales than those in aquatic ecosystems.

### CONCLUSION

Cross-fertilization of research in terrestrial, freshwater, and marine ecosystems has long enhanced our understanding of antipredator behavior and its ecological consequences. Hamilton’s seminal work (our opening example) recognized that the antipredator benefits of shoaling by fish in open-water habitats are analogous to those of group formation by social species in open, terrestrial environments. Hamilton’s selfish herd hypothesis continues to inform our understanding of animal group formation. For example, predatory attacks by free-ranging white sharks (*Carcharodon carcharias*) on Cape fur seal (*Arctocephalus pusillus*) decoys (i.e., simulated prey) matched Hamilton’s prediction that tighter interindividual distances reduce predation risk for individual members of a group. Many studies of risk effects and other ecological phenomena, however, have underutilized the potential benefits of thinking beyond the confines of their focal eco-domain.

We have highlighted general insights into the risk effects of predators that have emerged, at least in part, from cross-system comparison, arguing for broader conceptual exchange across the land–water divide. Our review suggests that aquatic ecology (and especially research in systems lacking well-defined habitat structure) can benefit from a greater appreciation of (1) the general importance of risk effects, (2) the potential influence of predator hunting mode on antipredator behavior, and (3) the expectation that mesopredators, not unlike herbivores, also respond behaviorally to predation risk. Terrestrial ecologists, on the other hand, would benefit from the idea that prey with different escape tactics could respond differently to the same predator and even show opposite patterns of spatial shifts. Furthermore, researchers from both realms will gain from insight into the factors that could differentiate risk effects in the water and on land, including visibility (Box 1). Therefore, synergy between marine and terrestrial ecologists should yield a broader framework for understanding and predicting the effects of predation risk on prey behavior and the dynamics of communities and ecosystems.
ACKNOWLEDGEMENTS

We thank C. Torgersen for providing the initiative for this work and are grateful to B. Kotler and an anonymous referee for providing helpful feedback. This paper was funded in part by National Science Foundation grants (DEB1145902) to AJW, (OCE0526065, OCE0745606, and DBI0620409) to MRH, and an NSERC IRDF fellowship to AF. This paper is contribution number 75 of the Shark Bay Ecosystem Research Project.

REFERENCES


